
Extremal Hypergraphs and Combinatorial Geometry 

ZOLTAN FUREDI* 

University of Illinois 
at Urbana-Champaign 
Urbana, lL 61801, USA 

and 
Math.lnst. 
Hungarian Academy of Sciences 
1364 Budapest, POB 127, Hungary 

ABSTRACT. Here we overview some of the methods and results of extremal 
graph and hypergraph theory. A few geometric applications are also given. 

1. Introduction and notation 

Most combinatorial problems can be formulated as (extremal) hypergraph prob­
lems. Extremal hypergraph theory applies a broad array of tools and results from 
other fields like number theory, linear and commutative algebra, probability the­
ory, geometry, and information theory. On the other hand, it has a number of 
interesting applications in all parts of combinatorics, and in geometry, integer pro­
gramming, and computer science. Some recent successes include: the best upper 
bound for the number of unit distances in a convex polygon [40]; the first nontrivial 
upper bound for the number of halving hyperplanes [3]; and the counterexample 
to the longstanding Borsuk's conjecture by Kahn and Kalai [48]. 

We overview some of the methods nsed in extremal graph and hypergraph 
theory and illustrate them by Tur~in-type problellls. Some geometric applications 
are also given; more can be found in the recent monograph [60]. 

A hypergraph H is a pair H = (V, E), where V is a finite set, the set of 
vertices, and [ is a family of subsets of V. the set of edges. If all the edges have 
r clements, then H is called an r-graph, or r-uniform hypergraph. The complete 
("-partite hypergraph Kt,h, .... t, has a partition of its vertex set V = VI U ... U v,., 
snch that IV,I = ti, and [ = {E : IE n Vii = I} for all 1 :::; i :::; r. The sct 
{I, 2, ... , n} is abbreviated as [n]. 

2. The Turan problem 

Given a graph F, what is ex(n, F), the maximum number of edges of a graph 
with n vertices not containing F as a subgraph? This problem was proposed 
for F = C4 by Erdos [19] in 1938 and in general by Tuntn [72]. For example, 
ex(n, K 3 ) = ln2 /4J (Mantel [57], Turall [72]). The Erdos-Stone-Simonovits [29], 
[26] theorem says that the order of magnitude of ex( n, F) depends only on the 
chromatic number, limn--->= ex( n , F) / G) = 1 - (X (F) - 1 t 1. This gives a sharp 
estimate, except for bipartite graphs. 
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Very little is known even about simple cases when F is a fixed even cycle 
C2k or a fixed complete bipartite graph Kk,k. For a survey of extremal graph 
problems, see Bollobas' book [5], or Simonovits [67], [66]. For Turan problems for 
hypergraphs see [41]. 

3. Minimum graphs of given girth 

Erdos proved in 1959 that for any X 2: 2 and g 2: 3 there exists a graph of chro­
matic number X and girth g. (The girth is the length of the shortest cycle.) Known 
elementary constructions yield graphs with an enormous number of vertices. Re­
cently, deep results in number theory combined with the eigenvalue methods in 
graph theory have been invoked with success to explicitly construct relatively small 
graphs, called Ramanujan graphs, with large chromatic number and girth (Mar­
gulis [58], Imrich [47], and Lubotzky, Phillips, and Sarnak [56]). These graphs give 
the lower bound in the following inequality: 

(1) 

The first nontrivial lower bound, n(n1+(1/2k)), was given by Erdos (see in [28]) 
using probabilistic methods. The upper bound is due to Bondy and Simonovits [6] 
and is believed to give the correct order of magnitude. 

Constructions giving n(n1+(l/k)) are known only for k = 2,3, and 5 (Benson 
[4]). Wenger [74] simplified these cases. Recently Lazebnik, Ustimenko, and Woldar 
gave new algebraic constructions [53] for all k. 

4. Bipartite graphs 

For every bipartite graph F that is not a forest there is a positive constant c 
(not depending on n) such that n(n1+C ) S; ex(n, F) S; O(n2 - c ). The lower bound 
follows from (1). The upper bound is provided by the following result of Kovari, 
S6s, and Tuntn [50] concerning the complete bipartite graph. 

1 
ex(n, Kt,t) < "2(t _1)1/tn2-(1/t) + (t - 1)n/2 = O(n2-(1/t)). (2) 

This bound gives the right order of magnitude of ex(n, Kt,t) for t = 2 and t = 3 
and probably for all t. For t > 3 the best lower bound, ex(n, Kt,t) 2: n(n2 - 2/(t+ 1 )), 

is due to Erdos and Spencer [28]. Until now the only asymptotic for a bipartite 
graph that is not a forest, ex(n,C4 ) = ~(1 + o(1))n3 / 2 , was due to Erdos, Renyi, 
and T. S6s [25] and to Brown [8]. This has recently been generalized [43]: 

THEOREl\! 1 For any fixed t 2: 1 ex(n, K 2,t+l) = ~vtn3/2 + O(n4/ 3 ). 

A large graph with no K 2,t+1. The following algebraic construction is closely 
related to the examples for C4-free graphs and is inspired by an example of Hylten­
Cavallius [46] and Mars [59] given for Zarankiewicz's problem [76]. Let q be a prime 
power such that (q - l)/t is an integer. We construct a K2,t+1-free graph G on 
(q2 - l)/t vertices such that every vertex has degree q or q - 1. Let F be the 
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q-element field, h E F an element of order t, H = {I, h, h2, ... ,ht - 1 }. The vertices 
of G are the t-element orbits of (F X F) \ (0, 0) under the action of multiplication by 
powers of h. Two classes (a, b) and (x, y) are joined by an edge in G if ax + by E H. 

Note that the sets N(a,b) = {(x,y) : ax+by E H} form a q-uniform, 
symmetric, solvable, group divisible t-design. 
Brown [8] gave an algebraic construction to show ex(n,K3 ,3) ~ (1/2 - o(1))n5/ 3 . 

Very recently, it was shown to be asymptotically optimal [44]. 

THEOREM 2 

5. The number of unit distances 

What is the maximum number of times, j(d)(n), that the same distance can oc­
cur among pairs of n points in the d-dimensional space R d? The complete bi­
partite graph K2,3 cannot be realized on the plane, so j(2)(n) ::; ex(n,K2,3) = 

O(n3 / 2). Erdos [20] conjectured in 1945 that the grid gave the best value, j(2)(n) = 

O(n1+C/loglogn). Spencer, Szemen§di, and Trotter [69] proved j(2)(n) ::; O(n4 / 3). 
A new proof appeared in Clarkson et al. [13]. Erdos observed that for the 3-space 
n 4/ 3 10glogn ::; j(3)(n) ::; ex(n,K3 ,3) = O(n5 / 3 ). The best upper bound is due 
to Clarkson et al. [13], j(3)(n) ::; O(n3 / 2(3(n)), where (3(n) is an extremely slowly 
growing function related to the inverse of Ackermann's function. 

It is proved in [40]' using the Turan theory of matrices resembling the Daven­
port-Schinzel problem solved by Sharir [64], that the maximum number of unit 
distances in a convex n-gon, g(2) (n), is at most 7n log n. Erdos and Moser [24] con­
jecture that g(2) (n) is linear. Edelsbrunner and Hajnal [17] showed that g(2) (n) ~ 
2n - 4. 

6. The number of halving planes 

In most problems an estimate on the number of sub(hyper )graphs isomorphic to a 
given structure F is more applicable than the information about the Turan number 
ex( n, F). Rademacher proved in 1941 that a graph with l n 2 /4 J + 1 edges has at 
least l n/2 J triangles (see Lovasz and Simonovits [55]). The best, in most cases 
almost optimal, lower bound for the number of triangles in a graph of n vertices 
and e edges was given by Fisher [31]. The following theorem was proved in [21] in 
an implicit form. For more explicit formulations see Erdos and Simonovits [27] or 
Frankl and Reidl [37]. 

THEOREM 3 (Erdos [21]) For any positive integers rand tl ::; ... ::; tr there 
exist positive constants c' and c" such that the following holds. If an r-graph has 
n vertices and e ~ c'nr-n edges, where a = 1/(tlt2··· tr-d, then it contains at 
least 

copies of the complete r-hypergraph Kt, , ... ,tT • 
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Let S C R3 be an n-set in general position. A plane containing three of the 
points is called a halving plane if it dissects S into two parts of (almost) equal 
cardinality. In [3] it was proved that the number of halving planes is at most 
O(n2 .g98 ). As a main tool, for every set Y of n points in the plane, a set N of 
size O(n4) is constructed such that the points of N are distributed almost evenly 
in the triangles determined by Y. The proof is a combined application of Turan 
theory (Theorem 3), the random method, and fractional hypergraph coverings. 

A generalization of Tverberg's theorem [73], conjectured in [3], was proved 
by Zivaljevic and VreCica [77] by Lovasz' topological method [54]. The exponent 
2.998 was improved most recently by Dey and Edelsbrunner [14] to 8/3. The best 
lower bound is D(n2 Iogn). The best 2-dimensional upper bound is due to Pach, 
Szemen§di, and Steiger [61]. 

7. Intersecting hypergraphs 

Here we consider the more general hypergraph problems, where the forbidden 
configurations are k-uniform hypergraphs. For example, if the excluded hypergraph 
consists of two disjoint edges; i.e., the family H of k-sets is intersecting, then 
IHI :::; G=i) for n ~ 2k, where n stands for the number of vertices. If 9 is a 
family of k-sets of [n] such that any two members intersect in at least t elements, 
then 191 :::; G=i), provided n is sufficiently large, n > no(k, t). Equality holds if 
and only if 9 consists of all k-element subsets of [n] containing a fixed t-element 
subset (Erdos, Ko, and Rado [23]). The exact value of no(k, t) = (k - t + l)(t + 1) 
was determined by Frankl [32] (for t ~ 15), and by Wilson [75] (for all t, using 
association schemes). Define 

AT = {G E C~]): IGn [t+2r]1 ~ t+r}. 

IATI is the largest among the Ai's if (k - t+ 1)(2+ ;:ti) :::; n < (k - t+ 1)(2+ t-;:l). 

CONJECTURE 1 (Erdos, Ko, and Rado [23]; Frankl [32]) If 9 is at-intersecting 
fam'ily of maximum cardinality, then 9 is isomorphic to AT for some r. 

This conjecture was proved [35] for r < cJt log t, where c > 0.02 is an absolute 
constant. The proof is a triumph of the transformation method (left shifting). 

THEOREM 4 [34] Suppose that a k-uniform hypergraph on n vertices has more 
than G=;=D edges, k ~ 2t + 2, n > ndk). Then it contains two edges F, F' such 
that IF n F'I = t. 

8. Prescribed intersections 

Let 0 :::; 1\ < ji2 < ... < ji8 < k :::; n be integers. The family 9 ~ (~) is an 
(n,k,{jil, ... ,jis})-system if IGnG'1 E {jil, ... ,ji,,} holds for every G,G' E 9, 
G i- G'. Denote {jil, ... ,jis} by L and let us denote by m(n,k,L) the maximum 
cardinality of an (n, k, L)-system. The determination of m(n, k, L) is the simplest 
looking Turan-type problem; the family of forbidden configurations consists only 
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of hypergraphs of size two. The most well-known result of this type is the Erdos­
Ko-Rado theorem dealing with the case L = {t, t + 1, ... , k - I} (see above). 

The problem of determining m(n, k, L) for general L was proposed by Lar­
man [51], and first studied by Deza, Erdos, and Frankl [15]. A few years earlier yet, 
Ray-Chaudhuri and Wilson [10] proved a very general upper bound, namely that 
m(n, k, L) :s: G) holds for all n ~ k and ILl = s. The proof uses linear algebraic 
independence of some higher order incidence matrices over the reals. This was 
generalized for finite fields by Frankl and Wilson [39]. Very recently Frankl, Ota, 
and Tokushige have determined almost all the 8192 exponents of the m( n, k, L) 's 
up to k :s: 12. The complexity of these questions can be seen in the following 
result of Frankl [33]. For every rational r ~ 1 there exist k and L such that 
m(n, k, L) = 8(nr). The proof of this combines the ~-system method, and alge­
braic and geometric constructions. A similar conjecture of Erdos and Simonovits 
[27] for graphs is still open: for every rational 1 < p/q < 2 there exists a bipar­
tite graph G with ex(n, G) = 8(nP / Q ), and every bipartite graph has a rational 
exponent r with ex(n, G) = 8(nr). 

Improving a result of Babai and Frankl [1] a necessary and sufficient condition 
for m(n, k, L) = 8(n) has been found. We say that the numbers £1, ... '£8 and k 
satisfy property (*) if there exists a family Ie 2[k], closed under intersection, such 
that UI = [k] and III E L for all I E I. 

THEOREM 5 [41] If (*) is satisfied, then m(n, k, L) > (1/8k)n k /(k-1). On the 

other hand, if (*) does not hold, then m( n, k, L) :s: (2 kk )n. 

9. The chromatic number of the space 

The following problem was proposed by Hadwiger [45]. What is the minimum 
number c(n) such that Rn can be divided into c(n) subsets Rn = G1 U ... U 
Ge(n) such that no pair of points within the same G i is at unit distance? In other 
words, what is the chromatic number of the unit distance graph? This problem 
is wide open even in the plane, we have only 4 :s: c(2) :s: 7. The regular simplex 
shows c(n) ~ n + 1; the first nonlinear lower bound O(n2 ) was given by Larman 
and Rogers [52]. They also gave an exponential upper bound of 3n . The above­
mentioned forbidden intersection theorems of Frankl and Wilson [39] easily lead 
to a lower bound of 1.2". 

Sixty years ago Borsuk [7] raised the following question. Is it true that every 
set of diameter one in Rd can be partitioned into d + 1 sets of diameter smaller 
than one? The following theorem of Frankl and Rodl [38] led to the counterexample 
given by Kahn and Kalai [48]. Let n be an integer divisible by four, and let F be 
a family of subsets of an n-element underlying set such that no two sets in the 
family have intersection of size n/4. Then IFI < l.99n . 

10. Szemenldi's regularity lemma 

This is a powerful graph-approximation method. We need some notation. Let G 
be an arbitrary, fixed graph. For two disjoint subsets V1 , V2 c V(G), let E(V1 • V2 ) 

denote the set of edges of G with one endpoint in VI and the other in V2 . The 
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edge-density between these sets is 

8(V V) = IE(VI,1I2)1 
1, 2 IVII. IV21 . 

The pair (VI, V2 ) is called c-regular, if 18(V{, Vn - 8 (VI , V2)1 < c holds for all 
V{ C VI and V; C V2 whenever IV{I ~ CIVIl and IV; I > CIV21· 

THEOREM 6 (Szemeredi's regularity lemma [70]) For every 0 < c < 1 and for 
every integer r there exists an M (c, r) such that the following is true for every 
graph G. The vertex set of G can be partitioned into £ classes VI, ... , Vc for some 
r:::; £:::; M(c,r) so that these classes are almost equal (i.e., IIViI- IV(G)I/£I < 1), 
and all but at most C£2 pairs (Vi, Vj) are c-regular. 

The main feature of Theorem 6 is that it allows us to handle any given graph 
as if it were a random one. Even the most chaotic graph can be decomposed 
into a relatively small number of almost regular systems. Rodl [62] and Elekes 
[18] showed that one cannot require all pairs (Vi, Vj) to be c-regular. Sos and 
Simonovits [68] (joining to works of Thomason [71] and Chung, Graham, and 
Wilson [12]) used Theorem 6 to describe the so-called quasi-random sequences of 
graphs. This connection is illuminated in the next section. 

11. Graphs with a small number of triangles 

This is an application of Szemeredi's regularity lemma. Let F be a fixed graph on 
the k-element vertex set {UI' ... , Uk}, and suppose that the graph G on n vertices 
contains only o(nk) copies of F. We will prove that one can delete 0(n2) edges 
from G to eliminate all copies of F. Reformulating this statement without o's for 
the special case F = K3 we get 

THEOREM 7 For every c > 0, there exists a 8 = 8(c) > 0 such that the following 
holds: For every graph G on n vertices with at most 8n3 triangles, one can find a 
set E' with at most cn2 edges, such that G \ E' is triangle-free. 

The theorem says that it is impossible to distribute evenly a small number of 
triangles in a graph with a large number of edges. 

Let VI' ... ' Vk be disjoint m-element sets and let 0 :::; 8 :::; 1. A random 
graph on the vertex set VI U ... U Vk is defined by choosing every pair of vertices 
u E Vi, v E Vj with probability 8. The expected edge-density between Vi and Vj 
is 8. Moreover, the expected number of copies of F such that Vi E Vi, and ViVj is 
connected for UiUj E E(F) is 8IE(F)lm k. The next lemma is used (sometimes in 
implicit form) in most applications of the Regularity Lemma. 

LEMMA 1 Let aI, ... ,ak be natural numbers, 2:= ai = p, let F be a graph on the 
p-element vertex set {Uij : 1 :::; i :::; k, 1:::; j :::; ad, and let 0 < c < p-P, clip:::; 8 < 
1/2. Suppose that the graph G has k pairwise disjoint subsets VI, ... , Vk C V( G), 
IViI ~ mi for all 1 :::; i :::; k, and 8(\Ii', Vi) ~ 8 hold for all \Ii' C Vi, Vi C Vj if for 
some 1 :::; i < j :::; k there is an edge UiaUjb E E(F) and 1\Ii'I ~ ciVil, IVil ~ clVjI· 
Then the subgraph of G induced by VI U .. . UVk contains at least 8IE (F)12- p TI (mi)a i 
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copies (embeddings) of F with vertex sets {Via} such that Via E Vi, Vjb E Vj, and 
ViaVjb E E(G) for UiaUjb E E(F). 

Proof. The case al = ... = ak = 1 implies the general case. Indeed, choose ai 
disjoint (m;/ai)-element sets from Vi, and apply the lemma for this new partition 
(c* = c/(maxai), 15* = 15). Then do this for all possible partitions. Finally, the 
case p = k follows by induction on k, as was done for F = Kk in [60]. 0 
Proof of Theorem 7. Let EO = (c/3)k. Suppose that EO < k-k /3, and define 
r = i3/Eol We claim that 15 = (2M(r,Eo))-k(Eo)IE(F)l/k will suffice. Let G be an 
arbitrary graph with at most I5n k copies of F. Apply Szemen§di's lemma with the 
above r and EO. We get a partition VI, ... , v". Delete all edges covered by any Vi, 
then delete all edges connecting Vi and Vj if the pair (Vi, Vj) is not co-regular, or 

if its density is less than c~/k. We have deleted at most n 2 /e+con2 +E~/kn2 edges. 
Then the rest of the graph is F-free; otherwise, the lemma would provide us at 
least EbE(F)l/k(n/2e)k copies. 0 

12. The maximum number of edges in a minimal graph of diameter 2 

A graph G of diameter 2 is minimal if the deletion of any edge increases its diame­
ter. Murty and Simon (sec in [9]) conjecture that such a G cannot have more than 
n 2 /4 edges. This was proved for n > no in [42] in the following slightly stronger 
form: the only extremum is the complete bipartite graph. The value of no is ex­
plicitly computable, but the proof gives a vastly huge number, a tower of 2's of 
height about 1014 . 

This theorem is the first application of Szemer6di's regularity lemma yield­
ing an exact answer (at least for n > no). Bounds were given by Caccetta and 
Hiiggkvist [9] and Fan [30]. It is easy to sec that the theorem gives a direct gen­
eralization of Tunin's triangle theorem. (If every edge in G that is contained in a 
triangle is also contained in some minimal path of length 2, then IE(G)I 'S n 2 /4.) 

The proof utilizes the following Turan type result of Ruzsa and Szemer6di 
[63]: if F is a triangle-free, 3-uniform hypergraph on n vertices (that means that 
no 6 vertices carry more than 2 triples), then IFI = o(n2 ). In almost all other 
applications of Theorem 6 one only needs the Ruzsa-Szemen3di theorem. :-rote 
that it is an easy corollary of Theorem 7. (Replacing each triple by the 3 pairs 
contained in it one gets a graph with 31FI edges and only IFI 'S G) = o(n3 ) 

triangles.) Other short proofs and generalizations for r-uniform hypergraphs (also 
based on Theorem 6) were given by Erdos, Frankl, and Rodl [22] and by Duke and 
Rodl [16]. 
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